Answer :

Answer:

hey friend how are you

Explanation:

3f(x)

Answer:

Let's calculate \( f(2x/1+x^2) \) using the given function \( f(x) = \log(1-x) \):

Given \( f(x) = \log(1-x) \),

Substitute \( x = \frac{2x}{1+x^2} \) into \( f(x) \):

\[ f\left(\frac{2x}{1+x^2}\right) = \log\left(1 - \frac{2x}{1+x^2}\right) \]

Now, we simplify the expression inside the logarithm:

\[ 1 - \frac{2x}{1+x^2} = \frac{1+x^2-2x}{1+x^2} = \frac{x^2 - 2x + 1}{1 + x^2} = \frac{(x-1)^2}{(1+x)(1-x)} \]

Therefore,

\[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{(x-1)^2}{(1+x)(1-x)}\right) \]

Now, using properties of logarithms, we can rewrite this as:

\[ f\left(\frac{2x}{1+x^2}\right) = \log((x-1)^2) - \log((1+x)(1-x)) \]

\[ f\left(\frac{2x}{1+x^2}\right) = 2\log|x-1| - (\log(1+x) + \log(1-x)) \]

\[ f\left(\frac{2x}{1+x^2}\right) = 2\log|x-1| - f(x) \]

So, \( f\left(\frac{2x}{1+x^2}\right) \) is equal to \( 2f(x) \).

Therefore, the correct option is:

(2) 2f(x)

Explanation:

Pls give thanks and follow for more