Answer :

Answer:

\[

x^3 + \frac{1}{x^3} = 198

\]

IF YOU GET ANY HELP FROM THIS ANSWER MAKE ME BRAINLIEST

Explanation:

To find the value of \( x^3 + \frac{1}{x^3} \) given \( x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \), we start by simplifying \( x \).

First, rationalize the denominator of \( x \):

\[

x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \cdot \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = \frac{(\sqrt{2} + 1)^2}{(\sqrt{2} - 1)(\sqrt{2} + 1)}

\]

Simplify the denominator:

\[

(\sqrt{2} - 1)(\sqrt{2} + 1) = 2 - 1 = 1

\]

Simplify the numerator:

\[

(\sqrt{2} + 1)^2 = (\sqrt{2})^2 + 2 \cdot \sqrt{2} \cdot 1 + 1^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}

\]

Thus,

\[

x = 3 + 2\sqrt{2}

\]

Next, find \( \frac{1}{x} \):

\[

\frac{1}{x} = \frac{1}{3 + 2\sqrt{2}}

\]

Rationalize the denominator:

\[

\frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \cdot \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} = \frac{3 - 2\sqrt{2}}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})}

\]

Simplify the denominator:

\[

(3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 9 - (2\sqrt{2})^2 = 9 - 8 = 1

\]

So,

\[

\frac{1}{x} = 3 - 2\sqrt{2}

\]

Next, calculate \( x + \frac{1}{x} \):

\[

x + \frac{1}{x} = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6

\]

We need \( x^3 + \frac{1}{x^3} \). Using the identity for cubes,

\[

x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3 \left( x + \frac{1}{x} \right)

\]

Let \( y = x + \frac{1}{x} \). Then,

\[

x^3 + \frac{1}{x^3} = y^3 - 3y

\]

Substitute \( y = 6 \):

\[

x^3 + \frac{1}{x^3} = 6^3 - 3 \cdot 6 = 216 - 18 = 198

\]

Therefore,

\[

x^3 + \frac{1}{x^3} = 198

\]

Other Questions