Answer :

Answer:

To find the directional derivative of \( \phi = \sqrt{x^2 + y^2 + z^2} \) at the point \( (3, 1, 2) \) in the direction of the vector \( \vec{v} = yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k} \), we proceed as follows:

1. **Compute the gradient of \( \phi \)**:

The gradient of \( \phi \) is given by:

\[

\nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right) = \left( \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)

\]

2. **Evaluate the gradient at \( (3, 1, 2) \)**:

Substitute \( x = 3 \), \( y = 1 \), \( z = 2 \):

\[

\nabla \phi (3, 1, 2) = \left( \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}} \right)

\]

3. **Normalize the vector \( \vec{v} \)**:

Calculate the magnitude of \( \vec{v} \):

\[

|\vec{v}| = \sqrt{(yz)^2 + (zx)^2 + (xy)^2} = \sqrt{y^2 z^2 + z^2 x^2 + x^2 y^2} = |xyz|

\]

Since \( x = 3 \), \( y = 1 \), \( z = 2 \):

\[

|\vec{v}| = |3 \cdot 1 \cdot 2| = 6

\]

Normalize \( \vec{v} \):

\[

\hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k}}{6}

\]

4. **Compute the directional derivative**:

The directional derivative \( D_{\vec{v}} \phi \) is given by:

\[

D_{\vec{v}} \phi = \nabla \phi \cdot \hat{v}

\]

Substitute \( \nabla \phi (3, 1, 2) \) and \( \hat{v} \):

\[

D_{\vec{v}} \phi = \left( \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}} \right) \cdot \frac{yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k}}{6}

\]

Calculate the dot product:

\[

D_{\vec{v}} \phi = \frac{1}{6\sqrt{14}} \left( 3yz + zx + 2xy \right)

\]

Substitute \( x = 3 \), \( y = 1 \), \( z = 2 \):

\[

D_{\vec{v}} \phi = \frac{1}{6\sqrt{14}} \left( 3 \cdot 1 \cdot 2 + 3 \cdot 2 \cdot 3 + 2 \cdot 1 \cdot 3 \right)

\]

\[

D_{\vec{v}} \phi = \frac{1}{6\sqrt{14}} \left( 6 + 18 + 6 \right)

\]

\[

D_{\vec{v}} \phi = \frac{1}{6\sqrt{14}} \cdot 30 = \frac{5}{\sqrt{14}}

\]

Therefore, the directional derivative of \( \phi = \sqrt{x^2 + y^2 + z^2} \) at the point \( (3, 1, 2) \) in the direction of \( \vec{v} = yz \, \mathbf{i} + zx \, \mathbf{j} + xy \, \mathbf{k} \) is \( \frac{5}{\sqrt{14}} \).

Other Questions