Answer :

Step-by-step explanation:

\[ 1 - \left\{ 1 + \left( (x^2 - 1)^{-1} \right)^{-1} \right\}^{-1} \]

First, simplify the innermost expression:

\[ (x^2 - 1)^{-1} = \frac{1}{x^2 - 1} \]

\(\frac{1}{x^2 - 1}\):

\[ \left( \frac{1}{x^2 - 1} \right)^{-1} = x^2 - 1 \]

expression:

\[ 1 + (x^2 - 1) \]

Now, take the reciprocal of \(1 + (x^2 - 1)\):

\[ \left\{ 1 + (x^2 - 1) \right\}^{-1} = \frac{1}{1 + (x^2 - 1)} \]

Substitute this into the outer expression:

\[ 1 - \left( \frac{1}{1 + (x^2 - 1)} \right) \]

To simplify further, simplify the fraction:

\[ 1 - \frac{1}{1 + x^2 - 1} \]

\[ 1 - \frac{1}{x^2} \]

Therefore, the simplified expression is:

\[ \boxed{\frac{x^2 - 1}{x^2}} \]

Other Questions