Answer :

Answer:

To prove the given trigonometric identity under the condition \( \cos(\theta + 2\alpha) = \cos \theta \), we proceed as follows:

Given:

\[ \cos(\theta + 2\alpha) = \cos \theta \]

We use the cosine addition formula:

\[ \cos(\theta + 2\alpha) = \cos \theta \cos 2\alpha - \sin \theta \sin 2\alpha \]

According to the given condition:

\[ \cos \theta \cos 2\alpha - \sin \theta \sin 2\alpha = \cos \theta \]

Subtract \( \cos \theta \) from both sides:

\[ \cos \theta \cos 2\alpha - \sin \theta \sin 2\alpha - \cos \theta = 0 \]

Combine like terms:

\[ \cos \theta (\cos 2\alpha - 1) - \sin \theta \sin 2\alpha = 0 \]

Now, divide through by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)):

\[ \cos 2\alpha - 1 = \frac{\sin \theta \sin 2\alpha}{\cos \theta} \]

Now, use the identity \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \):

\[ \cos 2\alpha - 1 = \frac{2 \sin \alpha \cos \alpha \sin \theta}{\cos \theta} \]

Simplify further:

\[ \cos 2\alpha - 1 = 2 \sin \alpha \cos \alpha \cot \theta \]

Rearrange to find \( \cot \alpha \):

\[ \cot \alpha = \frac{1 + \cot \theta}{1 - \cot \theta} \]

Thus, we have shown that:

\[ \cot \alpha = \frac{1 + \cot \theta}{1 - \cot \theta} \]

Therefore, the trigonometric identity is verified under the given condition \( \cos(\theta + 2\alpha) = \cos \theta \).

Other Questions