Answer :

Answer:

Therefore, the value of

sin

3

(

1

0

)

+

sin

3

(

5

0

)

sin

3

(

7

0

)

sin

3

(10

)+sin

3

(50

)−sin

3

(70

) is approximately

0.3762

−0.3762.

Step-by-step explanation:

To find the value of \(\sin^3(10^\circ) + \sin^3(50^\circ) - \sin^3(70^\circ)\), we can use some trigonometric identities and relationships.

First, we use the fact that \(\sin(90^\circ - x) = \cos(x)\). This helps us relate the angles given:

\[

\sin(70^\circ) = \cos(20^\circ)

\]

Using the identity, \(\sin(50^\circ) = \cos(40^\circ)\).

Now, substituting these into our expression, we have:

\[

\sin^3(10^\circ) + \sin^3(50^\circ) - \sin^3(70^\circ) = \sin^3(10^\circ) + \cos^3(40^\circ) - \cos^3(20^\circ)

\]

Using \(\cos(40^\circ) = \sin(50^\circ)\) and \(\cos(20^\circ) = \sin(70^\circ)\), we get:

\[

= \sin^3(10^\circ) + \sin^3(50^\circ) - \sin^3(70^\circ)

\]

Notice that \(\sin(50^\circ) = \cos(40^\circ)\) and \(\cos(20^\circ) = \sin(70^\circ)\).

These simplifications don't straightforwardly resolve the problem, so we can instead try to find numerical values for these angles' sines and then compute:

- \(\sin(10^\circ) \approx 0.1736\)

- \(\sin(50^\circ) \approx 0.7660\)

- \(\sin(70^\circ) \approx 0.9397\)

Now, we calculate:

\[

\sin^3(10^\circ) \approx (0.1736)^3 = 0.0052

\]

\[

\sin^3(50^\circ) \approx (0.7660)^3 = 0.4492

\]

\[

\sin^3(70^\circ) \approx (0.9397)^3 = 0.8306

\]

Thus, the expression becomes:

\[

0.0052 + 0.4492 - 0.8306 = -0.3762

\]

Therefore, the value of \(\sin^3(10^\circ) + \sin^3(50^\circ) - \sin^3(70^\circ)\) is approximately \(-0.3762\).

Other Questions