Answer :

Answer:

To prove that \( 2 \tan^{-1} x = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we will use some trigonometric identities and properties of inverse trigonometric functions.

### Step-by-Step Proof

1. **Let \( \theta = \tan^{-1} x \)**

By definition, if \( \theta = \tan^{-1} x \), then:

\[ x = \tan \theta \]

2. **Double the angle**:

We need to express \( 2 \theta \) in terms of \( x \). Using the double-angle identity for tangent, we have:

\[ \tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta} \]

Since \( x = \tan \theta \), we substitute \( x \) for \( \tan \theta \):

\[ \tan(2\theta) = \frac{2x}{1 - x^2} \]

3. **Express \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \) in terms of \( \theta \)**:

We need to show that \( 2\theta = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \).

Recall the trigonometric identity:

\[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \]

Using the Pythagorean identity:

\[ \cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + x^2} \]

\[ \sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = \frac{x^2}{1 + x^2} \]

Substitute these into the double-angle identity for cosine:

\[ \cos(2\theta) = \left( \frac{1}{1 + x^2} \right) - \left( \frac{x^2}{1 + x^2} \right) \]

\[ \cos(2\theta) = \frac{1 - x^2}{1 + x^2} \]

4. **Relate \( 2 \theta \) and the inverse cosine**:

Since \( \cos(2\theta) = \frac{1 - x^2}{1 + x^2} \), we can take the inverse cosine on both sides to solve for \( 2\theta \):

\[ 2\theta = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \]

5. **Substitute back \( \theta = \tan^{-1} x \)**:

Since \( \theta = \tan^{-1} x \), we substitute back:

\[ 2 \tan^{-1} x = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \]

### Conclusion

Thus, we have proved that:

\[ 2 \tan^{-1} x = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \]

plzz mark as branliest

Step-by-step explanation:

To prove the given trigonometric identity, we can start by expressing the inverse trigonometric functions in terms of basic trigonometric functions using the definitions:

1. tan^(-1)(x) = y means tan(y) = x

2. cos^(-1)(x) = y means cos(y) = x

Let's consider the right side of the equation:

cos^(-1)((1-x^2)/(1+x^2))

Using the definition of cosine inverse, we have:

cos^(-1)((1-x^2)/(1+x^2)) = y

cos(y) = (1-x^2)/(1+x^2)

Now, we can rewrite the right side in terms of tan^(-1)(x):

cos(y) = (1 - x^2)/(1 + x^2)

Dividing the numerator and denominator by 1, we get:

cos(y) = (1/x^2 - 1)/(1/x^2 + 1)

cos(y) = ((1 - x^2)/(x^2))/((1 + x^2)/(x^2))

cos(y) = (1 - x^2)/(1 + x^2)

tan(y) = (1 - x^2)/(1 + x^2)

Therefore, cos^(-1)((1-x^2)/(1+x^2)) = tan^(-1)((1-x^2)/(1+x^2))

Hence, we have proved that 2tan^(-1)(x) = cos^(-1)((1-x^2)/(1+x^2)).

Hope it help u! please mark my answer as a Brainliest...

Other Questions